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An extensive literature is devoted to the investigation of the behavior of 
perturbations of plane parallel steady flows (see [1 and 2]). Basic atten- 
tion is usually given to the determination of the stability of these flows 
and calculation of the critical values of the Reynolds number. Meanwhile, 
for the construction of a nonlinear stability theory, for the investigation 
of the behavior of dlstrurbances of arbltary form, and also for the solution 
of a number of other problems, a knowledge is required not only of the criti- 
cal perturbations, but also the whole spectrum of normal perturbations in 
the entire range of variation of the two parameters Reynolds number and wave 
number. 

For large values of Reynolds number the spectrum of perturbations can be 
investigated by an asymptotic method. In the paper of Grohne [3] results 
are given of such ~ investigation for Couette and Poiseuille flow and dis- 
cussion is given of the dependence of certain "lower" decrements on the Rey- 
nolds number for fixed values of the wave number. 

In the present paper we construct and use expansions of the normal per- 
turbations and their decrements in power series in the Reynolds number R 
These expansions permit us to establish the characteristic features of the 
spectrum of perturbations for small Reynolds number for an arbitrary velocity 
profile. 

In a quiescent fluid ~ - O) the perturbations decay monotonously (all 
decrements are real a~d positive). For R ~ 0 the form of the spectrum is 
qualitatively different in the cases of flows with even and odd profiles. 
In flows with even profiles the decrements are complex for arbitrarily small 
R , that is the perturbations are only "ruranlng" perturbations, whose phase 
velocity increases with R . In the case of a flow with an odd profile the 
expansions of the decrements are found to be real ("standing" perturbations); 
however in this case there is on the R-axis a singular point R. and the 
expansions are correct only up to it. At that point the decrements merge 
with the corresponding perturbation of the other parity, and for R > R. 
complex conjugate decrements occur. Simple intersections in the spectrum 
are impossible, as is shown. 

As examples the decrements for some lower levels of the spectrum are cal- 
culated In the paper by the method of perturbations at arbitrary values of 
the wave number for Polseuille and Couette flows and a flow with a cubic 
velocity profile. 
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I, ~ ~l'~ll~'b~:l,tU~. OP~mMIi~7 0~@~$, We consider plane 

parallel steady motion of a fluid between the planes x - ± ?+ . We choose 

as unit of velocltya characteristic velocity U o of the steady motion, and 

as units of. leI~th ar~ time we choose h and hal%; , respectively (where v 

is the kitnem~tlc viscosity). ~"ne stream function of small pertttvbatlons of 

the steady motion satisfies a linear equation wlth coefficients not dependlr~ 

upon z and t (where z is the coordinate alon E the flow and t the 

time). Consequently, there exist nori~al plan~ pertLtrbatlons of the form 

(x) exp  (-- i t  -5 iaz), where a i s  a real wave number ,  and V(x) and 

a r e  t h e  a m p l i t u d e  and d e c r e m e n t  o f  t h e  p e r t u r b a t i o n .  The d e c r e m e n t  k- i s  

r e l a t e d  t o  t h e  complex  p h a s e  v e l o c i t y  of  t h e  p e r t u r b a t i o n  o = o , +  tot  by 

the relation k = ~ao , that is 

Re k = - -  ac~, I m  k = a c t  ( I A )  

The amplitude ~(x) satisfies the Orr-Sommerfleld equation 

I 
( t .2)  

and the conditions on solid botLndarles 

¢p = (p' = 0 to, x = - F i  ( t . 3 )  

Here Y(x) is the velocity of the steady motion, and R is the Reynolds 

number. We introduce in place of the phase velocity c the decrement k , 

and rewrite (1.2) in the form 

d 2 I ~  ~ rHqJ - -  A ~  = ~,Aq~ ( r  = imR, A.-~x2--- ct2) (t.4) 

Here Y is an operator depending upon the profile Y(x) 

= - (15) 

Equation (1.4) and the boundary conditions (1.3) determine an infinite 

sequence of normal perturbations ~, (x) and decrements I, The operator 

L in (1.4) is not self-adJolnt, and its elgenvalues kl and eigemftmctlons 

~, are in general complex. 

We consider an adJoint bouz~ary-value problem. To find the form of the 

adJolnt operator we multiply the equation that is the co~lex conjugate of 

(1.4) by the function $(x) , which satisfies the boundary conditions 

= ~ '  = 0  t,o,, : r = + l  (t.6) 

and integrate with respect to x from -- 1 to + 1 . Interchanging deri- 

vatives of @* and $ througJh integration by parts, ar~ equating to zero 

the factor of ~*, we obtain 

L ÷ ,  ---- - -  r H ÷ ,  - -  A % ~  = k ' a , ,  H+@ = A (U,)  - -  U", 0 .7)  

E q u a t i o n  ( 1 . 7 )  and c o n d i t i o n s  ( 1 . 6 )  d e t e r m i n e  an i n f i n i t e  s e q u e n c e  o f  

conjugate normal perturbations $, (x)  and decreaments k , *  

The perturbations ~ and conjugate perturbations $~ belonging to dif- 

ferent decrements k, and k~* are orthogonal in a definite sence. From 
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( 1 . 4 )  and (1 .7)  can be o b t a i n e d  the  r e l a t i o n  

(1.8) 
(here and henceforth integration with respect to x is carried between the 

limits from -- I to +I). From (I.8) with k,# k, follows the orthogonality 

c o n d i t i o n  !~k*A~idx = 0 (1.9) 

2. P e r ~ i ~  i n  g ~ e e e ~  f ~ l ~ .  We c o n s i d e r  f i r s t  the  spec t rum 
of perturbations in a quiescent fluid ~ = 0). In this case the operator L 

is self-adJolnt. For real normal perturbations ~, o and the conjugate per- 

turbations $,C* corresponding to them We will have Equation 

h~(o)  = - -  k(o)h~ (o) (2 . t )  

and boundary conditions 
~(o) = ~ ( o ~  = 0 ,o, x = - F t  ( 2 . 2 )  

From (2.1) follows the  orthogonality c o n d i t i o n  

I~i (°) A~k (°) ~--- 0 (i #= k) (2.3) dx 

For t = k the integral in (2.3) is always negative, and consequently 

the elgenfunctlons ~ can be normalized to -- I . The orthogonallty 
condition takes the form 

l~tc °) A~k(°) dx = - -  6i~ ( 2 . 4 )  

From (2.1) it is easy to obtain the relation 

= _ a x  / I <o> A <o> (2.5) 

The integral in the numerator of (2.5) is always positive, but the nor- 

malizing integral in the denominator is negative. Thus the eigenvalues ~o) 

are real and positive -- all perturbations in a quiescent fluid decay monoto- 

nously. 

The problem (2.1) - (2.2) has even and odd solutions. The normalized 

even eigenfunctlons are 

' ~ / - ~ : - -  c o s ] / ~ - ~ ) ~ - ~  J ( i = 0 , 2 , 4 , . . . )  (2.6/ 

where 

~t (°) 
= (a~'  - t -  ~l,....,h_ a - -  aq, . . , , ,  ~ a - -  ~ ( o ~ )  J t  2 (~,n _ ~.t(o)) 

The decrements of the even parturbations are determined by Equation 

V t.t ¢°~ - -  a '  ' ,~ ] /Z. t (° )  - -  a '  = - -  a ~ , , h a  ( 2 . 7 )  

and depend upon the wave number a • For a = 0 

~,i(o) = I/4 (i -{- 2)' n ~ (i = 0, 2, 4 . . . .  ) (2.8) 

With Increasing a the decrements ~(0)(~) of the even perturbations 

at first decrease, pass through a minimum, and then increase, so that for 
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~,t~") = ~'4 ( i  -~- I )  s a s ~ a s 

The odd eigenfunctions are 

Here 

(2.9) 

( ~ = ~ , 3 , 5  . . . .  ) (2 .~0)  

2 (c(* - -  ~.t (°)) ( a s  _L ~ ~oth ct - -  ct s ~ m  ~' a - -  ~,~(o)) 

The decrements of the odd perturbations are found from Equation 

V xi (°) - a "z cot V ~i (°) - ~2 = a cot. ~ (2.11) 

For a " O the d e c r e m e n t s  a r e  the roots of Equation V kl (°) ~t ~ / ~ ( o ) =  i 

and are: k, (°) = 20.191, ks (°) -- 59.680, kJ °) ~--- ~18.90 . . . .  (see [4 ] ) .  
Wi~h Increaelng a all odd decrements increase monotonously, and for a~ 

Equation (2.9) is valid with ~ = i, 3, 5 .... For all values of the wave 

number a the even and odd decrements ~i(°) alternate with increase of the 

Index ~ ; their s e q u e n c e  in increasing order is ~0(0), }~i (0), ~2 (0), . . . 

The complete orthonormal system of base functions (2.6) and (2.10) Is 
conveniently used for approxlmmte solution of the Orr-Sommerfeld equation 
in various variants of the perturbation method, and also for reduction of 
that equation to a system of algebralc equations with the use of an elec- 
tronic computer. In [5] the even subsystem of functions (2.6) was used for 
numerical calculation of the stability of plane PolseuIlle flow. 

3, ~ Of ~ @f ~ |  ~ ,  In the previous section we 

considered perturbations and their decrements in a quiescent fluid (~ = O). 

For small values of Reynolds number we can seek the solution of the problem 

in the form of a series in powers of the parameters r = ~x~ • We set 

(p = ~p(o) + r(pO) -~ rSq~(2) + . . . , ~ = ;,(o) + rX(*) + : ~ , ( ~ )  -I- . . . ( 3 . t )  

Substituting the series (3.1) into Equation (1.4) and equating terms with 

like powers of r we obtain the equations of a sequence of approx~matlons 

A ~  (°) + X(°)Aq) (°) : 0 
A~(~) + )~(o) Aq~(~> __ _ ~(~)A(~(o) + H~(o) 

A~(s) + ~(°)Aq~(s) := -- X(~)Aq~(°) -- X(*)A(~(*) + H(Vn 

(3.2)  
. . . . . . . . . . . . . . . . . . .  . . , • ° . • . . . . . . .  . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . • . • . 

~p(,,) = (p(,o" __  0 fo ,  , _ -  + i ( 3 . 3 )  

The f i r s t  o f  e q u a t i o n s  ( 3 . 2 )  ( t h e  z e r o t h  a p p r o ~ t i o n ) ,  r epx~esen t£u~  

p e r t u r b a t i o r m  i n  a q u i e s c e n t  f l u £ d ,  was c ~ i d e r e d  a b o v e .  C o r r e c t i o n s  t o  

~(0) a r e  f o u n d  f r o m  e q u a t i o n s  o f  t h e  fo rm 

A ~ ( ~ )  + ~,(O)Aq)(-)  = A ( x )  ( 3 . 4 )  
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Here the f, (x) are known functions, depending on the preceeding approxi- 

mations and containing the X("). Multiplying (3.4) by qg(0) and integrating 

with respect to x , we obtain the conditions of solvability of (3.~) 

I /n (x) ,p(o) dx ---" 0 (3 .5)  

f rom w h i c h  a r e  found  t h e  c o r r e c t i o n s  t o  t h e  d e c r e m e n t s  ~(,) .  Then s o l v i n g  

t h e  nonhomogeneous  e q u a t i o n s  ( 3 . # )  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  ( 3 . 3 )  we 

f i n d  t h e  ~(n}. I n  t h i s  way we can  d e t e r m i n e  i n  s u c c e s s i o n  t h e  c o e f f i c i e n t s  

o f  t h e  e x p a n s i o n s  ( 3 . 1 ) .  I t  i s  e a s y  t o  s e e  t h a t  a l l  t h e  ~( , )  and )~(n) a r e  

r e a l ,  and t h e  s e r i e s  ( 3 . 1 )  may be w r i t t e n ,  s e p a r a t i n g  r e a l  and i m a g i n a r y  

p a r t s ,  i n  t h e  form 

+ ~'  R'~¢5) - -  . . . ) (3.6) 

k = (~c0~ --~R'X('~ + ~'R~. (') -- ) + i~R (~(1~ _ ~,R~k~,~ + 

+ ~' R ' k (  ~ -- . . . )  ( 3 . 7 )  

From ( 3 . 5 )  w i t h  c o n s i d e r a t i o n  o f  t h e  n o r m a l i z a t i o n  c o n d i t i o n  ( 2 . # )  we f ind  

• • . • • • • . ° . • . • . . . .  . * , • ° * • • . • , • • . . • • . . • • . • 

(3 8) 

An expansion In powers of the parameter r can be constructed also for 

the solution of the adJolnt problem (1.7). In so doing one uses equations 

analogous to those given above, with r replaced by _ r ~ ff by At*. 

The sequence of approximations is conveniently found by use of the method 

of perturbations, expanding ~(n) in the basic system of elgenfunctions-of 

the unperturbed problem (2.1) 

~i  ("~ = ~, ci~(") q ~ o ~  (3.9) 
k 

We glve the equatlons for the correctlons of first and second order to the 

elgenvalues and elgenfunctlons of the zth level 

Hk' (3.10) ~i (1) = -- H/i, ~i(1) = C/i(1)~/(0 ) -~ k~i ~ ~k (0) __ ~ 10). 

H~ Ski 
~,i(o) _ 

H~ [ H,, ]q~.(o)_] - 
~i(') = cli(~) q>i(°) - -  k,~ ~ '  ~','~'. _ ~,k(o~ c,i(') + , b?~, _ Xk(o ~ 

+ Y' }k,,., (3.11) _ 4(05 (x~ _ )~ (o~) 
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Here 

H~ = f ~o) H~k~O) dx (3. t2) 
The suJrmmttons In Equat ions  (3.10)  and ( 3 . i i )  run over  the unper turbed 

l e v e l s .  The c o e f f i c i e n t s  cti il) and c l i ( ~  are  determined by no rma l i za t i on .  

The expansions  ob ta ined  In th l s  s e c t i o n  are  va l l d  up to  a s l ngu l a r  p o l n t .  
As will be evident from what follows, the existence of this singular point 

is cor~nected.wlth the symmetry of the profile U(x) of the steady motion. 

The expansions are found to be essentially different in the cases off flows 

with even and odd velocity profiles. Henceforth these cases wlll be consi- 

dered separately. 

4. ~I@W| W~$h ey@n ~ot~l@|. If the profile of the steady flow has the 

symmetry property U(-- x) = U(x) (an example would be plane Polseullle flow), 

then the arbitrary values of the parameter r there exist even and odd solu- 

tions of the problem (1.3), (1.4). Thus the perturbation spectrum decomposes 

into two independent systems o even and odd levels. The parity of any of 

She levels at any value of Reynolds number is determined by the parity at 

r = 0 . From the equations for successive approximations (3.2) it follows 

that for an even U(x) , and consequently an even operator H , all correc- 

tions ~(n) have Just the same parity as the zeroth approximation ~(0). As 

is evident from Equations (3.8), all the ~(n) are in this case generally 

different from zero, and consequently the decrement 1 Is complex for arbi- 

trarily small r . Thus In the flow with an even profile the velocity per- 

turbations are only "running" perturbations, whose phase velocity 

Cr = a - i  I m  ~ = R (k ~i) - -  a ' R ~ I  (3) + . . . )  ( 4 . t )  

is, for small values of the Reynolds number, proportional to R . 

As an example we consider plane Polseuille flow with. the parabolic pro- 
file U = 1 _~2. We flnd the corrections i(I) and k~) of first and second 
order to the decrement by using the theory perturbations. 

The matrix elements of the perturbation operator H~ appearing in (3.10), 
(3.11) are different from zero only for equal parity of the indices. If 
and k are even, then 

~ - - ~ k { [ '  ~ ' ( ° ) (~ (0 ) - -  ~k(O)) ] 
H ~  = ~ + ~k ~0~ (~k (OJ ~i ~0~)' (~' + =mm~ -- ~ ~) + (4.~ 

2~'°) (3kk(O) - -  ~(0)) ] 

{(i~ t + 4 , ,o),  
Ht t = t~t -]-' a-~' ~ -[- 4-~'i4 J (~2 _~ a u u ~  -- a ~ a )  --  (4.3) 

]kt(o) ~| kt(o) aa~t(O-~ ~(o) 
- ' +  ( o , ' : - - v ' ,  

In the case of odd $ and k ~,,~ equations for the matrix elements are 
obtalned from (~.2) and (~.3) by replacing tanha by cotha . 
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Substituting the Hik~ into equations of perturbation theory (3.10) and 
(3.11) we obtain the ~(i) and ki(2) as functions of the wave number a • 
The series of perturbaglon theory, which it is necessary to sum by calcula- 
tion of the quadratic corrections to the decrement Ai ~a#, converge suffi- 
ciently rapidly. The rapidity of convergence is evident, for example, from 
the formulas for k;(~) with a = 0 and m~ I 

21° '~, [(2 + i)2 _~_ (2 + k)*] * 
)'i ~ =  n - ~ -  ~ .  [(2 + i) 2 - -  (2 + k)*p (~ = O) 

k¢=" 
2 ~ (i + 1) 2(k ÷ t) ~ 

(where $ is even; stumnation carried over even values of k }. 

Fig.l shows k (I) and k(D as functions of a • The corrections k~(1) 
and ~.(I) to the ~dd leveiB~are near 
to 0.7 ~und practlcal.ly do not depend -~TZ 
upon a (~,3(1}~,1()) .( )F!~.~- shows the // gu - I 1 I 

~ A./ -020/0 -' 

(13 - ~7 002 0 t 
Z ~ ~: - - - -  

Fig. i Fig. 2 

from th~ expansion (3.7), the sign of k(2), indicates the increase or decrease 
of.stabillty with increasing R, k(2)~0 corresponding to a reduction and 
k(~)~ 0 to an increase of stability compared with P = 0 . 

~, 71OW| With Od~ p ~ O f i l e | .  We consider now a steady flow with an odd 

profile: U(-- x) = -- U(x) . As a consequence of the oddness of the operator 

H the solutions of the problem (1.3), (1.4) for any arbitrary r ~ 0 do 

not possess a definite parity. 

We consider first of all the structure of the matrix of the operator L 

in (1.4) in the case of odd H • Choosing as a basis the functions ~n(0) ~ 

of (2.6) to (2.9), we rewrite (1.4) in matrix form 

~ I(~ - ~ o ~ )  6 ~  + i ~ H ~ ]  = 0 (5.1t 

where the on are the coefficients of the expansion of the perturbation 

on the basis of the functions ~(e) and the matrix elements g.n of the oper 

ator H are different from zero only for indices of different parity. By 

*) The flrst-order corrections ~I) and k~ ~) were calculated previously 
in [6]. 
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a ~mltavy transfo~tlon the matrix corresponding to Equation (5.1) can be 

reduced to the real form 

(~--~.~6 ran'" I'-~ =~-- r ~.) (5.21 

and consequently the elgenvalues of Equation (5.1) are either real or form 

complex conjugate pairs. 

We turn to the equations of the successive approximations (3.2) and (3.81. 

From the first equation of the system (3.8) it follows that ~I) = 0. Then 

the second equation of the system (3.2) leads to the conclusion that the 

correction ~(I~ has parity opposite to ~(0). The condition of solvability 

of the equation for ~(~ permits determination of ~(2) which is, generally 

speaking , different from zero; then the functions ~G~ have the same 

parity as ~(0). Progressing further in the system (3.2) and the conditions 

of solvability (3.8), it is easily seen that all odd corrections to the 

decrement vanish: ~U) = A(3) -_ . . . = 0, and consequently the functions 

~(n) have alternating parity. 

Thus in flows with odd velocity profiles the expansion of the decrement 

k in powers of Reynolds number is found to be real 

_ _  ~ o ~  _ ~2R2~ ~ ~ _  ~ 4 / ~ , ~ 4 ~  _ . . . ( 5 . 3 )  

Hence it follows that for small Reynolds number the perturbations of odd 

flows a~ monotonous; their phase velocity er= 0 ("stabdlng"perturbations~ 

Furthermore, it is evident from the expansion (3.6) that the real part of 

the perturbation ~ has bhe same parity as ~(o) (the perturbation for 

= 0), and the parity of the imaginary part of ~ is opposite to that of 

~(0). Thus the expansions (3.6) arising from even and odd levels ~i (°) at 

= 0 have different forms. If ~i (°) is real eigerLf~ulction of an even level 

(~ = O, 2, 4, ...) at 9 = 0 , then with increasing ~ there appears an 

ima$inary odd part proportioru~l to ~ for small ~ . For odd ~i ~") (t = I, 

3, 5, ...) there appears for ~ ~ 0 an even Im~iru~ry part. It is possible 

by convention to call the expansions of ~ "even" for t = O, 2, ~, ... and 

"odd" for t ffi i, 3, 5, ..., and for ~ ~ 0 , since for ~ - O, they reduce 

respectively to the even and odd functions ~i (0) 

The conclusions obtained regarding the reality of the decrements and the 

form of the expa~Islons for the elgenfunctions are valid naturally only up to 

the singular point on the ~-axis. T~t such a singular point actuall~ exists 

is indicated, for example, by the results of investigations of the pertur- 

bation spectrum for plane Couette flow (cf. [3 ~u3d 7]), from which arises 

the existence, beglmling at a certain Re,molds number, of perturbations with 

complex decre~nts. It will be shown below that the appearance of oscilla- 

ting perturbations is cor.nected with the intersection of the "even" and 

"odd" levels. 

We obtain a necessary cor~Itlon for the appearance of oscillating pertur- 

bations which arises directly from the property of oddness of the profile 

~(x) . For this purpose we shall deride the solutions of the basic ar~ 
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adJoint problems into even (subscript g) and odd (subscript u) parts 

_- ~g + ~, ~ = Cg + ¢~ (5.4) 

Multiplying Equation (1.4) in turn by $, and $u, and (I.7) by ~, and 

• u and integrating with respect to x , we obtain four integral relations. 

From these relations, with consideration of the oddness of the operator s H 

and H + and the connection between them, follows 

(~* - -  ~) I [ ~ A ~ u  - -  ~ A ~ g l  dx = 0 (5.5)  

The integral in (5.5) will henceforth be denoted by I • From (5.5) fol- 

lows a necessary condition for the appearance of oscillating perturbations 

(k*# k), the vanishing of the integral I • Untill then the expansions (3.6) 

and (3.7) are valid, the decrements are real (~*= k) , and the real integral 

I is different from zero and has different signs for the "even" and "odd" 

levels. Indeed for R ~ 0 the functions (5.4) reduce to functions of defi- 

nite parity, and by virtue of the normalizing conditions (2.4) we have 

I = ± 1 , where the plus and minus correspond respectively to the even and 

od~ levels. (We recall that the conjugate solutions for ~ = 0 were chosen 

to coincide with the basic ones). 

Thus for any of the normal perturbations ("even" or "odd") the integral 

I ~ 0 for R = 0 and, consequently, also for small R . Hence the vanish- 

ing of I aA~d the appearance of oscillating perturbations connected with it 

occur at some finite value R. of the Reynolds number, and also simultane- 

ously there should appear a pair of normal perturbations corresponding to 

the complex conjugate decrements ~ and k*; that is, at the point R. 

should occur the confluence Of two real decrements. 

The behavior of the decrements near the point of confluence can be traced 

by means of an approximate method used in quantum mechnlcs for the investl- 

gatlon of molecular terms ([8], Section 79) (*). 

Let R e be the value of the Reynolds number for which two neighboring 

decrements l, and I s are real and close (but not coincident). We denote 

by ~l and ~s the solutions corresponding to k I and ks, and by $i and 

$~ the conjugate solutions at point R e . The solution at a nearby point 

Ro+ 6R is found from Equation 

ia (R o -5 5R)  H ~  - -  A'~ = kA~  (5.6)  

can be approximately represented in the form 

= C1~ 1 -+-, C2~ ' (5.7) 

SubstltutinE (5.7) into (5.6), multiplying in turn by $i* and Ss% and 

integrating, we obtain a system of linear homogeneous equations for the coef- 

ficients e, and cs of the expansion. From the compatibility condltlon we 

*) This method was used for the investigation of the intersection of levels 
in the perturbation spectrum of equlllbrlum of a conducting fluid in a mag--- 
netlc field [9]. 
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can determine the decrements near 2o 

t V ~/~ 14 - 4 + (v~ - v~) ~/t] ~ + v ~ v ~  (aR) ~ ~5.8) 

Here 

Vm. == i a [ n  -1 !*r,,*IITndx, I n  == l ' n *  A ~ n d x  (m, n -= 1,2) (5,0)  

where  t h e  m a t r i x  e l e m e n t s  V n and Vm a r e  r e a l ,  and Vm and Va a r e  i m a g i -  

n a r y  ( c f .  t h e  e x p a n s i o n  ( 3 . 6 )  and E q u a t i o n s  ( 5 . 4 ) ) .  The c o o r d i n a t e  o f  t he  

point of intersection is P* = Po + 6R, where 5~ is determined 1"rom condition 

k÷ = ~_ 

From Equation (5.8) it is evident first of all that a simple intersection 

is not possible, in which both decrements are real on both sides of the point 

of intersection. For such an intersection it is evidently necessary that 

~2Vs~- 0 identically in Re, which obviously does not occur. In the case 

V~a Vs: > 0 intersection is impossible. The necessary condition for an inter- 

section is F~s Va~ < 0 ; then at point ~. there occurs a conjunction of 

real decrements, wheras for ~ > ~. the two decrements are complex conju- 

gates. As is easily seen, the solutions ~. and ~_ of (5.7) co~nclde at 

point ~. , and at that point both the normalized integrals I÷ and ~_ in 

(5.5) vanish. Thus the system of normal perturbations ceases to be complete 

at the point ~. ; for completeness it is necessary to add a "supplementary" 

solution [ i0] 

aO¢l 

\ I/'~7 i Z\< 
Fig. 3 Fig. 4 

Thus nelghbarlng real decrements (which consequently have different pari- 

ties) either never intersect at all, or merge in certain points 2. with the 

formation of complex conjugate pair. Since in the real domain the spectrum 

has alternating "parity", this conclusion is valid with respect to any two 

levels of different "parity"; but the intersection of the same "parity" is 

not at all possible. 

6. ~ O |  Ot fl~| W~ O4~ ~t~le. As examples we consider Couette 
flow with the linear profile Y - x and the flow with a cubic profile 
Y = x(l --A ~ ) • (Plow o[ thls'form arlse, in steady convection of a fluid 
between vertical parallel plates heated to different temperatures [11] ). 

For Couette flow the matrix elements are 



Spectrum of perturbatloas of plane parallel flows lO~ 

t I 2)'k(O) 1 ki(O) - -  (6. t )  Hik ~/'J--'~k i Jr ~tanhat -- ~ co,h~ ~.i(0) __~,k(O) ).i(o) __),k(O) 

_ l [ 27"t(°) ] ~'k(°) (6.2) 
kk )~i(o) 

( i = 0 , 2 , 4  . . . .  ; k =  t ,  3 , 5  . . . .  ) 

With the use of these matrix elements we can calculate the quadratic cor- 
rections to th~ decrement, summing the series (3.10) of perturbation theory. 

n r Th loosfo  c A 
~(Z) agree well with the results of numeri- 
cal calculation [7]. 

In the case Of flow with ~ cubic profile 
the matix elements are expressed by very 
unwieldy equations, which are not given here. 
Figs. 4 and 5 show the quadratic correcticr~ 
to the first five decrements as functions of 
the wave number, and Fig.6 shows as an example 80 

2 ~ ~ 20 

% 

J 
t 

, p  

~ l ~ 
50 "-. I00 

Fig. 5 Fig. 6 

the spectrum of decrements for a - 1 . The dashes correspond to extrapola- 
tion according to the quadratic correction. The value of the Reynolds num- 
ber at which confluence of ks and Xs occurs with the generation of complex 
conjugate decrements wa~ foand approximately by use of the equation of the 
theory of intersection t5.8), where R o- 0 was used. The lowest level k0 
can be extended to intersect the axis, and thus we can estimate the critical 
Reynolds number, determining the boundary of stability with respect to mono- 
tonous perttlrbations. Such extrapolation is clearly associated with a known 
risk. However the conclusion of the existence of monotonous instability of 
flows with a cubic profile does not involve any doubt. This conclusion was 
also obtained earlier (by other methods) in the investigation of the stabi- 
lity of steady convective motion [12]. Besides, the existence of monotonous 
instability is confirmed also by the results of numerical calculations on an 
electronic computer; they will be published later. This instability dis- 
tinguishes flow with a cubic profile from Couett~ flow where, as was shown 
in a general form in [13], monotonous perturbations always decay. 
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